Ideals and simplicial complexes of matroids

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

CombinatoireS

Summer School

Paris, June 29 - July 32015

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.
Let k be an arbitrary field and consider $k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k.

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.
Let k be an arbitrary field and consider $k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k.
For each base $B \in \mathcal{B}$, we introduce a variable y_{B} and we denote by R the polynomial ring in the variables y_{B}, i.e., $R:=k\left[y_{B} \mid B \in \mathcal{B}\right]$.

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.
Let k be an arbitrary field and consider $k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k.
For each base $B \in \mathcal{B}$, we introduce a variable y_{B} and we denote by R the polynomial ring in the variables y_{B}, i.e., $R:=k\left[y_{B} \mid B \in \mathcal{B}\right]$.
A binomial in R is a difference of two monomials, an ideal generated by binomials is called a binomial ideal.

Toric ideal associated to a matroid

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k\left[x_{1}, \ldots, x_{n}\right]$ induced by

$$
y_{B} \mapsto \prod_{i \in B} x_{i} .
$$

The image of φ is a standard graded k-algebra, which is called the bases monomial ring of the matroid M and it is denoted by S_{M}.

Toric ideal associated to a matroid

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k\left[x_{1}, \ldots, x_{n}\right]$ induced by

$$
y_{B} \mapsto \prod_{i \in B} x_{i}
$$

The image of φ is a standard graded k-algebra, which is called the bases monomial ring of the matroid M and it is denoted by S_{M}. The kernel of φ, which is the presentation ideal of S_{M}, is called the toric ideal of M and is denoted by I_{M}.

Toric ideal associated to a matroid

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k\left[x_{1}, \ldots, x_{n}\right]$ induced by

$$
y_{B} \mapsto \prod_{i \in B} x_{i} .
$$

The image of φ is a standard graded k-algebra, which is called the bases monomial ring of the matroid M and it is denoted by S_{M}. The kernel of φ, which is the presentation ideal of S_{M}, is called the toric ideal of M and is denoted by I_{M}.
Observation Let b be the number of bases of a matroid M on n elements. Then, I_{M} is generated by the kernel of the integer $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of M.

Example

Matroid $M(G)$ associated to graph G. We have $r(M(G))=3$.

Example

Matroid $M(G)$ associated to graph G. We have $r(M(G))=3$.

$\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right.$
$\left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}$

Example

$$
\begin{aligned}
& \mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right. \\
& \left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{cccccccl}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Example

$$
\begin{aligned}
& \mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right. \\
& \left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{cccccccc}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

By considering $\varphi: k\left[y_{B_{1}}, \ldots, y_{B_{8}}\right] \longrightarrow k\left[x_{1}, \ldots, x_{5}\right]$ we have that $y_{B_{1}} \mapsto x_{1} x_{2} x_{3}, \quad y_{B_{2}} \mapsto x_{1} x_{2} x_{5}, \quad y_{B_{3}} \mapsto x_{1} x_{3} x_{4}, \ldots$

Example

$$
\begin{aligned}
& \mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right. \\
& \left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{cccccccc}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

By considering $\varphi: k\left[y_{B_{1}}, \ldots, y_{B_{8}}\right] \longrightarrow k\left[x_{1}, \ldots, x_{5}\right]$ we have that
$y_{B_{1}} \mapsto x_{1} x_{2} x_{3}, \quad y_{B_{2}} \mapsto x_{1} x_{2} x_{5}, \quad y_{B_{3}} \mapsto x_{1} x_{3} x_{4}, \ldots$
An element of the kernel of φ (i.e., $\left.I_{M(G)}\right)$ is: $y_{B_{7}} y_{B_{4}}-y_{B_{2}} y_{B_{8}}$.

Toric ideal associated to a matroid

- It is well known that I_{M} is a prime, binomial and homogeneous ideal.

Toric ideal associated to a matroid

- It is well known that I_{M} is a prime, binomial and homogeneous ideal.

Observation Since $R / I_{M} \simeq S_{M}$, it follows that the height of I_{M} is $\operatorname{ht}\left(I_{M}\right)=|\mathcal{B}|-\operatorname{dim}\left(S_{M}\right)=|\mathcal{B}|-(n-c+1)$, where c is the number of connected components of M.

White's conjecture

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_{1}, B_{2} \in \mathcal{B}$ and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$.

White's conjecture

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_{1}, B_{2} \in \mathcal{B}$ and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$.

Brualdi proved that the exchange axiom is equivalent to the symmetric exchange axiom :

For every B_{1}, B_{2} in \mathcal{B} and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that both $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$ and $\left(B_{2} \cup\{e\}\right) \backslash\{f\} \in \mathcal{B}$.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.
We say that the quadratic binomial $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ correspond to a symmetric exchange.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.
We say that the quadratic binomial $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ correspond to a symmetric exchange.
It is clear that such binomial belong to the ideal I_{M}.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.
We say that the quadratic binomial $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ correspond to a symmetric exchange.
It is clear that such binomial belong to the ideal I_{M}.
Conjecture (White 1980) For every matroid M its toric ideal I_{M} is generated by quadratic binomials corresponding to symmetric exchanges.

White's conjecture

> Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.

White's conjecture

Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.
Since I_{M} is a homogeneous binomial ideal, it follows that
$I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right.\right.$ as multisets $\left.\}\right)$

White's conjecture

Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.
Since I_{M} is a homogeneous binomial ideal, it follows that
$I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right.\right.$ as multisets $\left.\}\right)$
White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

White's conjecture

Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.
Since I_{M} is a homogeneous binomial ideal, it follows that
$I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right.\right.$ as multisets $\left.\}\right)$
White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.
Observation White's conjecture does not depend on the field k.

Example continued

We had $\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right.$ $\left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}$.

We also had that $y_{B_{7}} y_{B_{4}}-y_{B_{2}} y_{B_{8}} \in I_{M(G)}$.
We can check that $B_{7} \cup B_{4}=\{2,4,5,1,3,5\}=B_{2} \cup B_{8}$.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids
- Lasoń, Michałek (2014) proved for strongly base orderables matroids.

Blasiak's reduction

Let M be a matroid on a ground set E with $|E|=\operatorname{nr}(M)$ where $r(M)$ is the rank of M.

Blasiak's reduction

Let M be a matroid on a ground set E with $|E|=\operatorname{nr}(M)$ where $r(M)$ is the rank of M.
The n-base graph of M, which is denoted by $G_{n}(M)$, has as its vertex set the set of all sets of n disjoint bases (a set of n bases $\left\{B_{1}, \ldots, B_{n}\right\}$ of M is disjoint if and only if

$$
|E|=\bigcup_{i=1}^{n} B_{i}
$$

There is an edge between $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ if and only if $B_{i}=D_{j}$ for some i, j.

$G_{2}\left(U_{2,6}\right)$

We have that $r\left(U_{2,6}\right)=2$, and let us take $n=3$.

$G_{2}\left(U_{2,6}\right)$

We have that $r\left(U_{2,6}\right)=2$, and let us take $n=3$. So

$M(G)$

$M(G)$

We have that $r(M(G))=2$ and we set $n=3$.

$M(G)$

We have that $r(M(G))=2$ and we set $n=3$.
$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{1,5\}, B_{4}=\right.$ $\{1,6\}, B_{5}=\{2,3\}, B_{6}=\{2,4\}, B_{7}=\{2,5\}, B_{8}=\{2,6\}, B_{9}=$ $\left.\{3,5\}, B_{10}=\{3,6\}, B_{11}=\{4,5\}, B_{12}=\{4,6\}\right\}$.

$G_{3}(M(G))$

$G_{3}(M(G))$

We notice that $y_{B_{4}} y_{B_{6}} y_{B_{9}}-y_{B_{1}} y_{B_{7}} y_{B_{12}} \in I_{M(G)}$

$G_{3}(M(G))$

We notice that $y_{B_{4}} y_{B_{6}} y_{B_{9}}-y_{B_{1}} y_{B_{7}} y_{B_{12}} \in I_{M(G)}$
since $B_{4} \cup B_{6} \cup B_{9}=\{1,2,3,4,5,6\}=B_{1} \cup B_{7} \cup B_{12}$.

$G_{3}(M(G))$

We notice that $y_{B_{4}} y_{B_{6}} y_{B_{9}}-y_{B_{1}} y_{B_{7}} y_{B_{12}} \in I_{M(G)}$
since $B_{4} \cup B_{6} \cup B_{9}=\{1,2,3,4,5,6\}=B_{1} \cup B_{7} \cup B_{12}$.

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials.

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials.
Proof (idea) The following statement is proved by induction on n :

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n : for every $M \in \mathfrak{C}$ and every binomial $b \in I_{M}$ of degree n, b is in the ideal generated by the quadratics of I_{M}.

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials.
Proof (idea) The following statement is proved by induction on n : for every $M \in \mathfrak{C}$ and every binomial $b \in I_{M}$ of degree n, b is in the ideal generated by the quadratics of I_{M}.
This will prove the result because I_{M}, as a toric ideal, is generated by binomials.

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.
The binomial b is necessarily of the form $b=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}$ for some bases $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ of M such that the B_{i} and D_{i} have the same multiset union.

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.
The binomial b is necessarily of the form $b=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}$ for some bases $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ of M such that the B_{i} and D_{i} have the same multiset union.
It is proved that b is in the ideal generated by the degree $n-1$ binomials of I_{M} (this is done by constructing a new matroid M^{\prime} that depends on the binomial b).

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.
The binomial b is necessarily of the form $b=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}$ for some bases $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ of M such that the B_{i} and D_{i} have the same multiset union.
It is proved that b is in the ideal generated by the degree $n-1$ binomials of I_{M} (this is done by constructing a new matroid M^{\prime} that depends on the binomial b).
By induction the degree $n-1$ binomials are in the ideal generated by the quadratics of I_{M} so this will complete the proof.

Blasiak's reduction

$$
y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)} .
$$

Blasiak's reduction

$$
y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)} .
$$

Blasiak's reduction

By following the path we construct
$y_{16} y_{24} y_{35}-y_{16} y_{23} y_{45}+y_{16} y_{23} y_{45}-y_{13} y_{26} y_{45}+y_{13} y_{26} y_{55}-y_{13} y_{25} y_{46}=$ $y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)}$.

Blasiak's reduction

By following the path we construct
$y_{16} y_{24} y_{35}-y_{16} y_{23} y_{45}+y_{16} y_{23} y_{45}-y_{13} y_{26} y_{45}+y_{13} y_{26} y_{55}-y_{13} y_{25} y_{46}=$
$y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)}$.
Or equivalently
$y_{16}\left(y_{24} y_{35}-y_{23} y_{45}\right)+y_{45}\left(y_{16} y_{23}-y_{13} y_{26}\right)+y_{13}\left(y_{26} y_{55}-y_{25} y_{46}\right)=$ $y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)}$.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} is generated by quadratics binomials.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} is generated by quadratics binomials.
Conjecture 2 For any matroid M, the quadratic binomials of I_{M} are in the ideal generated by the binomials $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ such that the pair of bases D_{1}, D_{2} can be obtained from the pair B_{1}, B_{2} by a symmetric exchange.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} is generated by quadratics binomials.
Conjecture 2 For any matroid M, the quadratic binomials of I_{M} are in the ideal generated by the binomials $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ such that the pair of bases D_{1}, D_{2} can be obtained from the pair B_{1}, B_{2} by a symmetric exchange.
Remark: Conjectures 1 and 2 together imply White's conjecture.

Complete Intersection

The toric ideal I_{M} is a complete intersection if and only if there exists a set of homogeneous binomials $g_{1}, \ldots, g_{s} \in R$ such that $s=\operatorname{ht}\left(I_{M}\right)$ and $I_{M}=\left(g_{1}, \ldots, g_{s}\right)$.

Complete Intersection

The toric ideal I_{M} is a complete intersection if and only if there exists a set of homogeneous binomials $g_{1}, \ldots, g_{s} \in R$ such that $s=\operatorname{ht}\left(I_{M}\right)$ and $I_{M}=\left(g_{1}, \ldots, g_{s}\right)$.
Equivalently, I_{M} is a complete intersection if

$$
\mu\left(I_{M}\right)=\operatorname{ht}\left(I_{M}\right)=|\mathcal{B}|-(n-c+1)
$$

where $\mu\left(I_{M}\right)$ denotes the minimal number of generators of I_{M} and c the number of connected components of M.

Complete Intersection

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a \mathcal{R} b$ if and only if there exist a circuit of M containing both $a, b \in M$.

Complete Intersection

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a \mathcal{R} b$ if and only if there exist a circuit of M containing both $a, b \in M$.

Complete Intersection

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a \mathcal{R} b$ if and only if there exist a circuit of M containing both $a, b \in M$.

We have $\mathcal{B}(M(G))=\{123,124,134,234\}$. There is one equivalent classe, and thus ht $\left(I_{M}\right)=4-(4-1+1)=0$.

Complete Intersection

Recall that

$$
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right)
$$

Complete Intersection

Recall that

$$
\begin{equation*}
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right) \tag{1}
\end{equation*}
$$

- If $r=n$ then $\operatorname{ht}\left(I_{M}\right)=1-(n-n+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is complete intersection.

Complete Intersection

Recall that

$$
\begin{equation*}
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right) \tag{1}
\end{equation*}
$$

- If $r=n$ then $\operatorname{ht}\left(I_{M}\right)=1-(n-n+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is complete intersection.
- If $r=n-1$ then $h t\left(I_{M}\right)=n-(n-1+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is also complete intersection.

Complete Intersection

Recall that

$$
\begin{equation*}
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right) \tag{1}
\end{equation*}
$$

- If $r=n$ then $\operatorname{ht}\left(I_{M}\right)=1-(n-n+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is complete intersection.
- If $r=n-1$ then $h t\left(I_{M}\right)=n-(n-1+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is also complete intersection.
Thus, we only consider the case $r \leq n-2$.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.
σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.
σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.
It is straightforward to check that $\sigma\left(I_{M}\right)=I_{M^{*}}$

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.
σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.
It is straightforward to check that $\sigma\left(I_{M}\right)=I_{M^{*}}$
Thus, I_{M} is a complete intersection if and only if $I_{M^{*}}$ also is.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.
σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.
It is straightforward to check that $\sigma\left(I_{M}\right)=I_{M^{*}}$
Thus, I_{M} is a complete intersection if and only if $I_{M^{*}}$ also is. Proposition Let M^{\prime} be a minor of M. If I_{M} is a complete intersection, then $I_{M^{\prime}}$ also is.

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.
Example :
$\mathcal{B}\left(U_{2,4}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{1,4\}, B_{4}=\right.$ $\left.\{2,3\}, B_{5}=\{2,4\}, B_{6}=\{3,4\}\right\}$

$$
\left(\begin{array}{cccccc}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Complete Intersection : rank 2 case

$H_{U_{2,4}}$

$$
\left(\begin{array}{cccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.

- It turns out that I_{M} coincides with the toric ideal of the graph H_{M}.

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.

- It turns out that I_{M} coincides with the toric ideal of the graph H_{M}.
Theorem (I. Bermejo, I. Garcia-Marco, E. Reyes) Whenever $I_{H(M)}$ is a complete intersection, then H_{M} does not contain $K_{2,3}$ as subgraph.

Complete Intersection : rank 2 case

Complete Intersection : rank 2 case

Complete Intersection : rank 2 case

Therefore I_{G} is not complete intersection.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that

$$
B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B} .
$$

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$. If $\{4,5\} \in \mathcal{B}$, then H_{M} has a subgraph $K_{2,3}$ and I_{M} is not a complete intersection.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$.
If $\{4,5\} \in \mathcal{B}$, then H_{M} has a subgraph $K_{2,3}$ and I_{M} is not a complete intersection.
If $\{4,5\} \notin \mathcal{B}$ also implies that H_{M} has a subgraph $K_{2,3}$.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$.
If $\{4,5\} \in \mathcal{B}$, then H_{M} has a subgraph $K_{2,3}$ and I_{M} is not a complete intersection.
If $\{4,5\} \notin \mathcal{B}$ also implies that H_{M} has a subgraph $K_{2,3}$.
(\Leftarrow) By computer.

Complete Intersection : general case

Theorem Let M be a matroid without loops or coloops and with $n>r+1$. Then, I_{M} is a complete intersection if and only if $n=4$ and M is the matroid whose set of bases is :
$1 \mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\}\}$,
$2 \mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\},\{1,4\}\}$, or
$3 \mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\},\{1,4\},\{2,3\}\}$, i.e., $M=U_{2,4}$.

Detecting minors

We consider the following binary equivalence relation \sim on the set of pairs of bases :
$\left\{B_{1}, B_{2}\right\} \sim\left\{B_{3}, B_{4}\right\} \Longleftrightarrow B_{1} \cup B_{2}=B_{3} \cup B_{4}$ as multisets, and we denote by $\Delta_{\left\{B_{1}, B_{2}\right\}}$ the cardinality of the equivalence class of $\left\{B_{1}, B_{2}\right\}$.

Detecting minors

We consider the graph

Detecting minors

We consider the graph

Therefore, $\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{124\}, B_{3}=\{134\}, B_{4}=\{234\}\right\}$.

Detecting minors

We consider the graph

Therefore, $\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{124\}, B_{3}=\{134\}, B_{4}=\{234\}\right\}$. It can be checked that the equivalent class of $\left\{B_{i}, B_{j}\right\}$ is $\left\{B_{i}, B_{j}\right\}$, that is, $\Delta_{\left\{B_{i}, B_{j}\right\}}=1$ for any pair $1 \leq i \neq j \leq 4$.

Detecting minors

Lemma (bounds) For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=\left|B_{1} \backslash B_{2}\right|$.

Detecting minors

Lemma (bounds) For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=\left|B_{1} \backslash B_{2}\right|$.
Proof of the lower bound Take $e \in B_{1} \backslash B_{2}$. By the multiple symmetric exchange property, for every A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, there exists $A_{2} \subset B_{2}$ such that both $B_{1}^{\prime}:=\left(B_{1} \cup A_{2}\right) \backslash A_{1}$ and $B_{2}^{\prime}:=\left(B_{2} \cup A_{1}\right) \backslash A_{2}$ are bases.

Detecting minors

Lemma (bounds) For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=\left|B_{1} \backslash B_{2}\right|$.
Proof of the lower bound Take $e \in B_{1} \backslash B_{2}$. By the multiple symmetric exchange property, for every A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, there exists $A_{2} \subset B_{2}$ such that both $B_{1}^{\prime}:=\left(B_{1} \cup A_{2}\right) \backslash A_{1}$ and $B_{2}^{\prime}:=\left(B_{2} \cup A_{1}\right) \backslash A_{2}$ are bases.
Since $B_{1} \cup B_{2}=B_{1}^{\prime} \cup B_{2}^{\prime}$ as multisets, we derive that $\Delta_{\left\{B_{1}, B_{2}\right\}}$ is greater or equal to the number of sets A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, which is exactly 2^{d-1}.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.
Theorem If M has a minor $M^{\prime} \simeq U_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.
Theorem If M has a minor $M^{\prime} \simeq U_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.
Theorem (binary) M is binary if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}} \neq 3$ for every $B_{1}, B_{2} \in \mathcal{B}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.
Theorem If M has a minor $M^{\prime} \simeq U_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.
Theorem (binary) M is binary if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}} \neq 3$ for every $B_{1}, B_{2} \in \mathcal{B}$.
Theorem M has a minor $M^{\prime} \simeq U_{3,6}$ if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}}=10$ for some $B_{1}, B_{2} \in \mathcal{B}$.

System of generators

$\nu\left(I_{M}\right)=$ the number of minimal sets of binomial generators of I_{M}, where the sign of a binomial does not count $\mu\left(I_{M}\right)=$ the minimal number of generators of I_{M}.

System of generators

$\nu\left(I_{M}\right)=$ the number of minimal sets of binomial generators of I_{M}, where the sign of a binomial does not count
$\mu\left(I_{M}\right)=$ the minimal number of generators of I_{M}.
Theorem Let $R=\left\{\left\{B_{1}, B_{2}\right\}, \ldots,\left\{B_{2 s-1}, B_{2 s}\right\}\right\}$ be a set of representatives of \sim and set $r_{i}:=\Delta_{\left\{B_{2 i-1}, B_{2 i}\right\}}$ for all $i \in\{1, \ldots, s\}$. Then,

$$
\begin{aligned}
& 1 \quad \mu\left(I_{M}\right) \geq\left(b^{2}-b-2 s\right) / 2, \text { where } b:=|\mathcal{B}| \text {, and } \\
& \text { 2 } \nu\left(I_{M}\right) \geq \prod_{i=1}^{s} r_{i}^{r_{i}-2} .
\end{aligned}
$$

Moreover, in both cases equality holds whenever I_{M} is generated by quadratics.

System of generators

$\nu\left(I_{M}\right)=$ the number of minimal sets of binomial generators of I_{M}, where the sign of a binomial does not count
$\mu\left(I_{M}\right)=$ the minimal number of generators of I_{M}.
Theorem Let $R=\left\{\left\{B_{1}, B_{2}\right\}, \ldots,\left\{B_{2 s-1}, B_{2 s}\right\}\right\}$ be a set of representatives of \sim and set $r_{i}:=\Delta_{\left\{B_{2 i-1}, B_{2 i}\right\}}$ for all
$i \in\{1, \ldots, s\}$. Then,

$$
\begin{aligned}
& 1 \mu\left(I_{M}\right) \geq\left(b^{2}-b-2 s\right) / 2 \text {, where } b:=|\mathcal{B}| \text {, and } \\
& 2 \mu\left(I_{M}\right) \geq \prod_{i=1}^{s} r_{i}^{r_{i}-2} \text {. }
\end{aligned}
$$

Moreover, in both cases equality holds whenever I_{M} is generated by quadratics.
Question Can we characterize those matroids M with $\nu\left(I_{M}\right)=1$?

The basis graph of a matroid M is the undirected graph G_{M} with vertex set \mathcal{B} and edges $\left\{B, B^{\prime}\right\}$ such that $\left|B \backslash B^{\prime}\right|=1$. The diameter of a graph is the maximum distance between two vertices of the graph.

The basis graph of a matroid M is the undirected graph G_{M} with vertex set \mathcal{B} and edges $\left\{B, B^{\prime}\right\}$ such that $\left|B \backslash B^{\prime}\right|=1$. The diameter of a graph is the maximum distance between two vertices of the graph.

Basis graph $G_{U_{2,4}}$

$\{3,4\}$

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

Proof (idea) (\Rightarrow) By the previous theorem, we have that
$\Delta_{\left\{B_{1}, B_{2}\right\}}=1$ or 2 for all $B_{1}, B_{2} \in \mathcal{B}$.

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\left\{B_{1}, B_{2}\right\}}=1$ or 2 for all $B_{1}, B_{2} \in \mathcal{B}$.
By Lemma bounds and Theorem binary, this is equivalent to M is binary and $\left|B_{1} \backslash B_{2}\right| \in\{1,2\}$ for all $B_{1}, B_{2} \in \mathcal{B}$. Clearly this implies that the diameter of G_{M} is less or equal to 2 .

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\left\{B_{1}, B_{2}\right\}}=1$ or 2 for all $B_{1}, B_{2} \in \mathcal{B}$.
By Lemma bounds and Theorem binary, this is equivalent to M is binary and $\left|B_{1} \backslash B_{2}\right| \in\{1,2\}$ for all $B_{1}, B_{2} \in \mathcal{B}$. Clearly this implies that the diameter of G_{M} is less or equal to 2 .
(\Leftarrow) More complicated.

Example

Matroid $M(G)$ associated to graph G.

Example

Matroid $M(G)$ associated to graph G.

$\mathcal{B}(M(G))=\left\{B_{1}=\{124\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right.$ $\left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{235\}, B_{8}=\{345\}\right\}$

Example

The base graph $G_{M(G)}$

Example

The base graph $G_{M(G)}$

Since diameter of $G_{M(G)}$ is at most two, and $M(G)$ is binary then $\nu\left(I_{M}\right)=1$.

Simplicial complexes

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Simplicial complexes

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.

Simplicial complexes

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.

Simplicial complexes

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.
If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.

Simplicial complexes

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.
If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.
The dimension of Δ is defined to be $\operatorname{dim} \Delta=\max \{\operatorname{dim} F \mid F \in \Delta\}$.

Simplicial complexes

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.
If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.
The dimension of Δ is defined to be $\operatorname{dim} \Delta=\max \{\operatorname{dim} F \mid F \in \Delta\}$.
The complex Δ is said to be pure if all its facets have the same dimension.

Simplicial complexes

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.
If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.
The dimension of Δ is defined to be $\operatorname{dim} \Delta=\max \{\operatorname{dim} F \mid F \in \Delta\}$.
The complex Δ is said to be pure if all its facets have the same dimension.
If $\{v\} \in \Delta$ then we call v a vertex of Δ.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.
Let Δ be a simplicial complex with vertex set V.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.
Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.
Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.
- If $W \subseteq V$ then $\operatorname{link}_{\Delta}(W)=\{F \in \Delta \mid W \cap F=\emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.
Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.
- If $W \subseteq V$ then $\operatorname{link}_{\Delta}(W)=\{F \in \Delta \mid W \cap F=\emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.
- If $v \notin V$ then the cone over Δ is $C \Delta=\Delta \cup\{F \cup\{v\} \mid F \in \Delta\}$

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.
Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.
- If $W \subseteq V$ then $\operatorname{link}_{\Delta}(W)=\{F \in \Delta \mid W \cap F=\emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.
- If $v \notin V$ then the cone over Δ is $C \Delta=\Delta \cup\{F \cup\{v\} \mid F \in \Delta\}$
v is called the apex of $C \Delta$.

Definitions

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ.

Definitions

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ.

- Typically, we will describe a simplicial complex by listing its facets.

Example

Simplicial complexe Δ of dimension 2

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).
- $f(\Delta)=(1,5,8,2)$.

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).
- $f(\Delta)=(1,5,8,2)$.
- The link ${ }_{\Delta}(3)$ is the complex with facets 15 and 24 , while the link $_{\Delta}(5)$ has facets 13 and 4.

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).
- $f(\Delta)=(1,5,8,2)$.
- The link ${ }_{\Delta}(3)$ is the complex with facets 15 and 24 , while the link $_{\Delta}(5)$ has facets 13 and 4.
- The deletion of 3 has facets $12,24,45$ and 15 . The deletion of 5 has facets 234,13 and 12.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.
The independent sets of M form a simplicial complex, called the independence complex of M.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.
The independent sets of M form a simplicial complex, called the independence complex of M.
Axiom (13) can be replaced by the following one $(I 3)^{\prime}$ for every $A \subset E$ the restriction

$$
\left.\mathcal{I}\right|_{A}=\{I \in \mathcal{I}: I \subset A\}
$$

is a pure simplicial complex.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.
The independent sets of M form a simplicial complex, called the independence complex of M.
Axiom (13) can be replaced by the following one $(I 3)^{\prime}$ for every $A \subset E$ the restriction

$$
\left.\mathcal{I}\right|_{A}=\{I \in \mathcal{I}: I \subset A\}
$$

is a pure simplicial complex. A simplicial complex Δ over the vertices V is called matroid complex if axiom (I3)' is verified.

Examples

Two 1-dimensional simplicial complexes.

(a)

(b)

Examples

Two 1-dimensional simplicial complexes.

(a) Matroid complex (this can be checked by verifying that every $A \subseteq\{1, \ldots, 6\}, \Delta_{A}$ is pure).

Examples

Two 1-dimensional simplicial complexes.

(a)

(b)
(a) Matroid complex (this can be checked by verifying that every $A \subseteq\{1, \ldots, 6\}, \Delta_{A}$ is pure).
(b) is not a matroid complex since it admits a restriction that is not pure, for instance, the facets of $\Delta_{1,3,4}$ are $\{1\}$ and $\{3,4\}$ and so this restriction is not pure.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.
- $\operatorname{link}_{\Delta}(F)$ for every $F \in \Delta$.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.
- $\operatorname{link}_{\Delta}(F)$ for every $F \in \Delta$.

Remarks: Link and restriction are identical to the contraction and deletion constructions from matroids.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.
- $\operatorname{link}_{\Delta}(F)$ for every $F \in \Delta$.

Remarks: Link and restriction are identical to the contraction and deletion constructions from matroids.
A matroid complex Δ_{M} is a cone if and only if M has a coloop (or isthme), which corresponds to the apex defined above.

Standard constructions

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, link $_{\Delta}(v) \cap E \neq \emptyset$.

Standard constructions

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, link $_{\Delta}(v) \cap E \neq \emptyset$.

(a)

(b)

Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex Δ, a square free monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$,

$$
I_{\Delta}=\left(x_{F}=\prod_{i \in F} x_{i} \mid F \notin \Delta\right) \subseteq S
$$

Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex Δ, a square free monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$,

$$
I_{\Delta}=\left(x_{F}=\prod_{i \in F} x_{i} \mid F \notin \Delta\right) \subseteq S
$$

The ideal I_{Δ} is called the Stanley-Reisner ideal of Δ and S / I_{Δ} the Stanley-Reisner ring of Δ.

Stanley-Reisner ideal

Facts

Stanley-Reisner ideal

Facts

- Hilbert function

$$
h_{S / I_{\Delta}}(h)=\operatorname{dim}_{k}\left[S / I_{\Delta}\right]_{h}
$$

where $\left[S / I_{\Delta}\right]$ is the vector space of degree h homogeneous polynomial outside of I_{Δ}.

Stanley-Reisner ideal

Facts

- Hilbert function

$$
h_{S / I_{\Delta}}(h)=\operatorname{dim}_{k}\left[S / I_{\Delta}\right]_{h}
$$

where $\left[S / I_{\Delta}\right]$ is the vector space of degree h homogeneous polynomial outside of I_{Δ}.

- Hilbert series

$$
H_{S / I_{\Delta}}(t)=\sum_{i=1}^{\infty} h_{S / I_{\Delta}}(i) t^{i}=\frac{h_{0}+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{d}}
$$ where $d=\operatorname{dim} I_{\Delta}$.

Stanley-Reisner ideal

Facts

- Hilbert function

$$
h_{S / I_{\Delta}}(h)=\operatorname{dim}_{k}\left[S / I_{\Delta}\right]_{h}
$$

where $\left[S / I_{\Delta}\right]$ is the vector space of degree h homogeneous polynomial outside of I_{Δ}.

- Hilbert series

$$
H_{S / I_{\Delta}}(t)=\sum_{i=1}^{\infty} h_{S / I_{\Delta}}(i) t^{i}=\frac{h_{0}+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{d}}
$$

where $d=\operatorname{dim} I_{\Delta}$.
$h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ is known as the h-vector of Δ.

h-vector of simplicial complexes

Assume that $\operatorname{dim} \Delta=d-1$.

h-vector of simplicial complexes

Assume that $\operatorname{dim} \Delta=d-1$.
We may study the h-vector of a simplicial complex of Δ $h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ from its f-vector via the relation

$$
\sum_{i=0}^{d} f_{i-1} t^{i}(1-t)^{d-i}=\sum_{i=0}^{d} h_{i} t^{i}
$$

h-vector of simplicial complexes

Assume that $\operatorname{dim} \Delta=d-1$.
We may study the h-vector of a simplicial complex of Δ $h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ from its f-vector via the relation

$$
\sum_{i=0}^{d} f_{i-1} t^{i}(1-t)^{d-i}=\sum_{i=0}^{d} h_{i} t^{i}
$$

In particular, for any $j=0, \ldots, d$, we have

$$
\begin{aligned}
& f_{j-1}=\sum_{i=0}^{j}\binom{d-i}{j-1} h_{i} \\
& h_{j}=\sum_{i=0}^{j}(-1)^{j-i}\binom{d-i}{j-1} f_{i-1} .
\end{aligned}
$$

h-vector of simplicial complexes

The h-vector of a matroid M may be interpreted combinatorially in terms of certain invariants of M.

h-vector of simplicial complexes

The h-vector of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.

h-vector of simplicial complexes

The h-vector of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.
Given a bases B, an element $v_{j} \in B$ is internally passive in B if there is some $v_{i} \in E \backslash B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{j}\right) \cup v_{i}$ is a bases of M.

h-vector of simplicial complexes

The h-vector of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.
Given a bases B, an element $v_{j} \in B$ is internally passive in B if there is some $v_{i} \in E \backslash B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{j}\right) \cup v_{i}$ is a bases of M.
Dually, $v_{j} \in E \backslash B$ is externally passive in B if there is some $v_{i} \in B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{i}\right) \cup v_{j}$ is a bases of M.

h-vector of simplicial complexes

The h-vector of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.
Given a bases B, an element $v_{j} \in B$ is internally passive in B if there is some $v_{i} \in E \backslash B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{j}\right) \cup v_{i}$ is a bases of M.
Dually, $v_{j} \in E \backslash B$ is externally passive in B if there is some $v_{i} \in B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{i}\right) \cup v_{j}$ is a bases of M.
Remark v_{j} is externally passive in B if it is internally passive in $E \backslash B$ in M^{*}.

h-vector of simplicial complexes

Bjorner proved that

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}(M)} t^{i p(B)}
$$

where $i p(B)$ counts the number of internally passive elements in B.

h-vector of simplicial complexes

Bjorner proved that

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}(M)} t^{i p(B)}
$$

where $i p(B)$ counts the number of internally passive elements in B. Remark This proves that the h-numbers of a matroid complex are nonnegative.

h-vector of simplicial complexes

Bjorner proved that

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}(M)} t^{i p(B)}
$$

where $i p(B)$ counts the number of internally passive elements in B. Remark This proves that the h-numbers of a matroid complex are nonnegative.
Alternatively,

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}\left(M^{*}\right)} t^{e p(B)}
$$

where $e p(B)$ counts the number of externally passive elements in B.

h-vector of simplicial complexes

Remarks

- Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.

h-vector of simplicial complexes

Remarks

- Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.
- h-vector of a matroid complex Δ_{M} is actually a specialization of the Tutte polynomial of the corresponding matroid ; precisely we have $T(M ; x, 1)=h_{0} x^{d}+h_{1} x^{d_{1}}+\cdots+h_{d}$

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$
We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=3$ and $f_{1}=3$.

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$
We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=3$ and $f_{1}=3$.
Therefore

$$
\begin{aligned}
\sum_{i=0}^{2} f_{i-1} t^{i}(1-t)^{2-i} & =f_{-1} t^{0}(1-t)^{2}+f_{0} t(1-t)+f_{1} t^{2}(1-t)^{0} \\
& =(1-t)^{2}+3 t(1-t)+3 t^{2} \\
& =1-2 t+t^{2}+3 t-3 t-3 t^{2}+3 t^{2} \\
& =t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
\end{aligned}
$$

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$
We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=3$ and $f_{1}=3$.
Therefore

$$
\begin{aligned}
\sum_{i=0}^{2} f_{i-1} t^{i}(1-t)^{2-i} & =f_{-1} t^{0}(1-t)^{2}+f_{0} t(1-t)+f_{1} t^{2}(1-t)^{0} \\
& =(1-t)^{2}+3 t(1-t)+3 t^{2} \\
& =1-2 t+t^{2}+3 t-3 t-3 t^{2}+3 t^{2} \\
& =t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
\end{aligned}
$$

Obtaining that $h(\Delta)=(1,1,1)$.

Example continuation

Let $\mathcal{B}\left(U_{2,3}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{2,3\}\right\}$.

Example continuation

Let $\mathcal{B}\left(U_{2,3}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{2,3\}\right\}$.
We can check that

- there is not internally passive element in B_{1}
- 3 is internally passive element of B_{2}
- 2 and 3 are internally passive elements of B_{3}

Example continuation

Let $\mathcal{B}\left(U_{2,3}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{2,3\}\right\}$.
We can check that

- there is not internally passive element in B_{1}
- 3 is internally passive element of B_{2}
- 2 and 3 are internally passive elements of B_{3}

Thus

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}\left(U_{2,3}\right)} t^{i p(B)}=1+t+t^{2}
$$

Example continuation

Let $\mathcal{B}\left(U_{2,3}^{*}=U_{1,3}\right)=\left\{B_{1}=\{1\}, B_{2}=\{2\}, B_{3}=\{3\}\right\}$.

Example continuation

Let $\mathcal{B}\left(U_{2,3}^{*}=U_{1,3}\right)=\left\{B_{1}=\{1\}, B_{2}=\{2\}, B_{3}=\{3\}\right\}$.
We can check that

- 2 and 3 are externally passive elements of B_{1}
- 3 is externally passive element of B_{2}
- there is not externally passive element in B_{3}

Example continuation

Let $\mathcal{B}\left(U_{2,3}^{*}=U_{1,3}\right)=\left\{B_{1}=\{1\}, B_{2}=\{2\}, B_{3}=\{3\}\right\}$.
We can check that

- 2 and 3 are externally passive elements of B_{1}
- 3 is externally passive element of B_{2}
- there is not externally passive element in B_{3}

Thus

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}\left(U_{1,3}\right)} t^{e p(B)}=t^{2}+t+1
$$

Example continuation

We have that

$$
T\left(U_{3,2} ; x, y\right)=x^{2}+x+y
$$

Example continuation

We have that

$$
T\left(U_{3,2} ; x, y\right)=x^{2}+x+y
$$ and thus

$$
T\left(U_{3,2} ; t, 1\right)=t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
$$

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.
Let \mathcal{O}_{i} denote the collection of monomials in \mathcal{O} of degree i. Let $F_{i}(\mathcal{O}):=\left|\mathcal{O}_{i}\right|$ and $F(\mathcal{O})=\left(F_{0}(\mathcal{O}), F_{1}(\mathcal{O}), \ldots, F_{r}(\mathcal{O})\right)$.

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.
Let \mathcal{O}_{i} denote the collection of monomials in \mathcal{O} of degree i. Let $F_{i}(\mathcal{O}):=\left|\mathcal{O}_{i}\right|$ and $F(\mathcal{O})=\left(F_{0}(\mathcal{O}), F_{1}(\mathcal{O}), \ldots, F_{r}(\mathcal{O})\right)$.
We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.
Let \mathcal{O}_{i} denote the collection of monomials in \mathcal{O} of degree i. Let $F_{i}(\mathcal{O}):=\left|\mathcal{O}_{i}\right|$ and $F(\mathcal{O})=\left(F_{0}(\mathcal{O}), F_{1}(\mathcal{O}), \ldots, F_{r}(\mathcal{O})\right)$.
We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.
A vector $\mathbf{h}=\left(h_{0}, \ldots, h_{d}\right)$ is a pure O-sequence if there is a pure ideal \mathcal{O} such that $\mathbf{h}=F(\mathcal{O})$.

Example

The pure monomial order ideal inside $k[x, y, z]$ with maximal monomials $x^{3} \mathbf{z}$ and $\mathbf{x}^{2} z^{3}$ is :

$$
X=\left\{x y^{3} z, x^{2} z^{3}\right.
$$

Example

The pure monomial order ideal inside $k[x, y, z]$ with maximal monomials $x y^{3} z$ and $x^{2} z^{3}$ is :

$$
X=\left\{\mathbf{x y}^{3} \mathbf{z}, \mathbf{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z\right.
$$

Example

The pure monomial order ideal inside $k[x, y, z]$ with maximal monomials $x y^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathbf{x y}^{3} \mathbf{z}, \mathbf{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& x y^{2}, x z^{2}, z^{3}, x^{2} z,
\end{aligned}
$$

Example

The pure monomial order ideal inside $k[x, y, z]$ with maximal monomials $x y^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathrm{xy}^{3} z, \mathrm{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2},
\end{aligned}
$$

Example

The pure monomial order ideal inside $k[x, y, z]$ with maximal monomials $x y^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathrm{xy}^{3} z, \mathrm{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2}, z, y, x,
\end{aligned}
$$

Example

The pure monomial order ideal inside $k[x, y, z]$ with maximal monomials $x y^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathrm{xy}^{3} z, \mathrm{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& \left.x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2}, z, y, x, 1\right\} .
\end{aligned}
$$

Example

The pure monomial order ideal inside $k[x, y, z]$ with maximal monomials $x y^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \{ \\
& \mathrm{xy}^{3} z, \mathrm{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z, \\
& \left.x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2}, z, y, x, 1\right\} .
\end{aligned}
$$

Hence the h-vector of X is the pure O-sequence
$h=(1,3,6,7,5,2)$.

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid $M, h(M)$ is a pure O -sequence.

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid $M, h(M)$ is a pure O -sequence.
Conjecture hold for several families of matroid complexes :

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured
Conjecture (Stanley, 1976) For any matroid $M, h(M)$ is a pure O -sequence.
Conjecture hold for several families of matroid complexes :
(Merino, Noble, Ramirez-Ibañez, Villarroel, 2010) Paving matroids
(Merino, 2001) Cographic matroids
(Oh, 2010) Cotranversal matroids
(Schweig, 2010) Lattice path matroids
(Stokes, 2009) Matroids of rank at most three
(De Loera, Kemper, Klee, 2012) for all matroids on at most nine elements all matroids of corank two.

Example

We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph G

Example

We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph G

We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=4$ and $f_{1}=4$.

Example

$$
\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\} .
$$

Example

$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$.

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Example

$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$.

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Thus,

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}(M(G))} t^{i p(B)}=1+t+t+t^{2}=1+2 t+t^{2}
$$

Example

$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$.

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Thus,
$\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}(M(G))} t^{i p(B)}=1+t+t+t^{2}=1+2 t+t^{2}$.
Obtaining the h-vector $h(1,2,1)$.

Example

$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$.

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Thus,
$\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}(M(G))} t^{i p(B)}=1+t+t+t^{2}=1+2 t+t^{2}$.
Obtaining the h-vector $h(1,2,1)$. Since $\mathcal{O}=\left(1, x_{1}, x_{2}, x_{1} x_{2}\right)$ is an order ideal then $h(1,2,1)$ is pure O-sequence.

